Yeast TAFII145 Required for Transcription of G1/S Cyclin Genes and Regulated by the Cellular Growth State
نویسندگان
چکیده
TFIID comprises the TATA box-binding protein and a set of highly conserved associated factors (TAF(II)s). yTAF(II)145, the core subunit of the yeast TAF(II) complex, is dispensable for transcription of most yeast genes but specifically required for progression through G1/S. Here we show that transcription of G1 and certain B-type cyclin genes is dependent upon yTAF(II)145. At high cell density or following nutrient deprivation, yeast cells cease division, enter a G0-like state, and terminate transcription of most genes. In this stationary phase, we find that the levels of yTAF(II)145, several other yTAF(II)s, and TBP are drastically reduced. Collectively, our results indicate that yTAF(II)145 and other TFIID components have a specialized role in transcriptional regulation of cell cycle progression and growth control.
منابع مشابه
Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter
HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...
متن کاملTolerance of deregulated G1/S transcription depends on critical G1/S regulon genes to prevent catastrophic genome instability.
Expression of a G1/S regulon of genes that are required for DNA replication is a ubiquitous mechanism for controlling cell proliferation; moreover, the pathological deregulated expression of E2F-regulated G1/S genes is found in every type of cancer. Cellular tolerance of deregulated G1/S transcription is surprising because this regulon includes many dosage-sensitive proteins. Here, we used the ...
متن کاملWhi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast.
Eukaryotic cells commit in G1 to a new mitotic cycle or to diverse differentiation processes. Here we show that Whi3 is a negative regulator of Cln3, a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. Whi3 contains an RNA-recognition motif that specifically binds the CLN3 mRNA, with no obvious effects on Cln3 levels, and localizes the CLN3 mRN...
متن کاملG1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast.
Entry into a new cell cycle is triggered by environmental signals at a point called Start in G1 phase. A key regulator of this transition step in yeast is the CDC28 kinase together with its short-lived regulatory subunits called G1-cyclins or CLN proteins. To identify genes involved in G1-cyclin degradation, we employed a genetic screen by selecting for stable CLN1-beta-galactosidase fusion pro...
متن کاملCyclin A is a mediator of p120E4F-dependent cell cycle arrest in G1.
E4F is a ubiquitously expressed GLI-Krüppel-related transcription factor which has been identified for its capacity to regulate transcription of the adenovirus E4 gene in response to E1A. However, cellular genes regulated by E4F are still unknown. Some of these genes are likely to be involved in cell cycle progression since ectopic p120E4F expression induces cell cycle arrest in G1. Although p2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 90 شماره
صفحات -
تاریخ انتشار 1997